Loading...
 

ear

Ear Profile


Keely
"As a suggestion to those interested in psychological researches I will mention that Keely has copied nature in all his instruments from the Vibrophone, which is fashioned after the human ear, up to the Disintegrator, in which the neutral center represents the human heart." [Keely and His Discoveries]

"The human ear cannot detect the triple chord of any vibration, or sounding note but every sound that is induced of any range, high or low, is governed by the same laws, as regards triple action of such that govern every sympathetic flow in Nature. Were it not for these triple vibratory conditions, change of polarity could never be effected, and consequently there could be no rotation. Thus the compounding of the triple triple, to produce the effect would give a vibration in multiplication reaching the ninth, in order to induce subservience, the enumeration which it would be folly to undertake, as the result would be a string of figures a mile in length to denote it. [Snell Manuscript - The Book, DISTURBANCE OF MAGNETIC NEEDLE, page 8]

Ramsay
"The science of music is the knowledge of how Nature proceeds in this beautiful region of creation in which so much of pleasure for mankind is found, and meet expression for the praise of God. "Music hath charms to soothe the savage beast;" how much more to gratify the civilized and educated ear; to stir with inspiration the prophetic gift; to comfort the troubled heart; and to draw forth the best feelings of our nature." [Scientific Basis and Build of Music, page 20]

"While vibrations are the sound-stuff, the protoplasm of notes, semitones are, as it were, the atoms of which music is composed. We may think and talk of quarter tones and commas, apotomes and skismas, and dots, but these have no place as intervals for the musical ear, nor any part in the compositions which so charm us of the great masters." [Scientific Basis and Build of Music, page 20]

Effect here means, of course, musical effect in the ear's appreciation of the notes. [Scientific Basis and Build of Music, page 28]

Either the one or the other must be at fault. Had the dictates of the mathematicians and the scale of mathematical intonation wholly ruled, the advent of the great masters would have been impossible. It was well said by one writing in The Choir - "Theory should be made from music, and not music from theory . . . the final judge of music is the Ear." The Great Masters are the exponent artists of what is true in the Science of Music, though it may differ from what has been taught by the merely mathematical-intonation advocates of music science. It should not be forgotten that the science of the mathematical theorists is one thing, and that of the composers is another. Schubert, Beethoven, Mozart, Haydin, Mendelssohn, and such inspired musicians, who walked in the liberty wherewith Nature made them free, are sufficient authority against the bondage of the one-law theorists who would tie us down to the mathematical command which comes from without, but who know nothing of the life within music which is the law unto itself.1
With twelve divisions in the Octave, each note is adapted to serve in any capacity, and does serve in every capacity by turns. It is quite clear that this cannot be said of the mathematically perfect notes. And this is where it is seen that what is perfect in mathematical ratios becomes imperfect in the Musical System. Indeed, the mathematical intonation does not give a boundary within which to constitute a System at all, but goes off into never-ending cycles.
In music, Nature begins by producing the Diatonic Octave of seven notes, derived by the mathematical ratios2; [Scientific Basis and Build of Music, page 34]

The twelve semitones being the practical fulfillment of the ratios when the life-force of the notes is considered, the great masters had the ratios in their most workable form invested in their key-boards, and this along with the musical ear was the sure word of prophecy to them.1 In their great works they have thus been enabled to develop the science of music, and to express it in the language of its art. [Scientific Basis and Build of Music, page 36]

"and goes within this range, with its wondrous infoldings which so charm the ear, and which symbolise so many spiritual mysteries. These twelve major keys with their twelve minors are the musical world, and motion in the operation of 3 is not much hampered by rest controlling it in the operation of 2; and what is lost of so-called "perfect intonation" is far more than made up for in the beautiful system within system, which musical science, when fairly and fully brought into view, presents for our contemplation, and the intellect feasts along with the ear." [Scientific Basis and Build of Music, page 40]

BY THE EDITOR


The Greeks most probably constructed their musical tetrachords in a symmetrical order in analogy with their sculpture, and showed the ear identical with the eye in its love of symmetry. With them, therefore, the Dorian mode would have a certain pre-eminence. Beginning this mode on D, without knowing the musical mystery that resides in D, they had two tetrachords with the semitones symmetrically in the middle in one mode; it was next possible for them to arrange in pairs, symmetrically, the other tetrachords.

D8 E5 F9 G8 A9 B5 C9 D
E5 F9 G8 A9 B5 C9 D8 E — C9 D8 E5 F9 G8 A9 B5 C
F9 G8 A9 B5 C9 D8 F5 F — B5 C9 D8 E5 F9 G8 A9 B
C9 D8 E5 F9 G8 A9 B5 C — E5 F9 G8 A9 B5 C9 D8 E
B5 C9 D8 E5 F9 G8 A9 B — F9 G8 A9 B5 C9 D8 E5 F
A9 B5 C9 D8 E5 F9 G8 A — G8 A9 B5 C9 D8 E5 F9 G
G8 A9 B5 C9 D8 E5 F9 G — A9 B5 C8 D9 E5 F9 G8 A

[Scientific Basis and Build of Music, page 45]

among the Greeks on account of having symmetry in itself. The primitive scale was doubtless that which is the model of all major music; and our minor model is its dual, as Ramsay has shown, which in its genesis indicates the duality of all the rest of the notes, although it is not probable that the Greeks saw the musical elements in this light. It is remarkable and significant that in their modes the Greeks did not lift up the scale of Nature into different pitches, preserving its model form as we do in our twelve major scales, but keeping the model form at one pitch they built up their symmetrical tetrachords, allowing the larger and lesser tones of the primitive scale to arrange themselves in every variety of place, as we have shown in the table of tetrachord modes above. Without seeing the genetic origin of music's duality they were led to arrange the modes by symmetry, which is one of the phases of duality. Symmetry is duality in practice. It may not always be apparent how symmetry originates in Nature; but in music, the art of the ear, duality emerges in the genesis of the minor scale; in the true mathematical build of the major on the root of the major subdominant F, and the true relation of the minor to it in the inverse genesis descending from the top of the minor dominant B. [Scientific Basis and Build of Music, page 46]

that Nature has done so.1 And in every new key into which we modulate Nature performs the same operation, till in the course of the twelve scales she has cut every greater note into two, and made the notes of the scale into twelve instead of seven. These we, as a matter of convenience, call semitones; though they are really as much tones as are the small intervals which Nature gave us in the genesis of the first scale between B-C and E-F. She only repeats the operation for every new key which she had performed at the very first. It is a new key, indeed, but exactly like the first. The 5 and 9 commas interval between E and G becomes a 9 and 5 comma interval; and this Nature does by the rule which rests in the ear, and is uttered in the obedient voice, and not by any mathematical authority from without. She cuts the 9-comma step F to G into two, and leaving 5 commas as the last interval of the new key of G, precisely as she had made 5 commas between B and C as the last interval of the key of C, she adds the other 4 commas to the 5-comma step E to F, which makes this second-last step a 9-comma step, precisely as she had made it in the key of C.2 [Scientific Basis and Build of Music, page 48]


After vibrations the next thing is musical notes, the sounds produced by the vibrations falling into the ear. Sounds arise in association. There are no bare simple sounds in music; it is a thing full of the play of sympathy. Such a thing as a simple solitary sound would be felt as a strange thing in our ears, accustomed as we are to hear affiliated sounds only. These affiliated sounds, called "harmonics," or "partials" as they have also been called, because they are the parts of which the sound is made up, are like perspective in vision. In perspective the objects lying in the line of sight, seem smaller and smaller, and more dim and indefinite as they stretch away into the distance; while nearer objects and those in the foreground are apparently larger, and are more clearly seen. This is the way of a musical sound; one of its component elements, the fundamental partial, being, as it were, in the foreground to the ear, is large and pronounced; while the other elements are less distinctly heard, and are fainter and fainter as they recede into the musical distance in the perspective of the ear. Few have any idea of the number of these weaker partials of a musical sound. Tyndal's illustrations in his very instructive work on Sound show a string spontaneously divided into twenty segments, all vibrating separately, being divided by still nodes along its length; and a vibrating string will keep thus [Scientific Basis and Build of Music, page 58]

dividing itself by 2 or 3 or 5, etc., up through the whole geometrical series of numbers, not keeping fixed at one thing; but while the whole length is vibrating the fundamental partial, it keeps shifting the still nodes along its length, and sometimes longer and sometimes shorter segments are sounding the other partials which clothe the chief sound. It has been commonly said that "a musical sound is composed of three sounds," for every ear is capable of hearing these three, and with a little attention a few more than these; but many will be startled when told that there are twenty-five sounds in that sound. Eighteen of them are simply the octaves of the other seven, all of these seven except one having one or more octaves in the sound. Four of the seven also are very feeble, the one which has no octave being the feeblest of all. Two of the other three are so distinctly audible along with the chief partial that they gave rise to the saying we have quoted about a musical sound being composed of three sounds.1 If the three most pronounced partials were equally developed in one sound, it could not be called one sound - it would decidedly be a chord; and when in the system they do become developed, they form a chord; but in the one sound they, the partials, having fewer and fewer octaves to strengthen them, fade away in the perspective of sound. The sharp seventh, which in the developed system has only one place, not coming into existence until the sixth octave of the genesis, is by far the feeblest of all the partials, and Nature did well to appoint it so. These harmonics are also sometimes called "overtones," because they are higher than the fundamental one, which is the sound among the sounds, as the Bible is the book among books. [Scientific Basis and Build of Music, page 59]

Speaking of acute harmonics Pole says - "The first six are the only ones usually considered to be of any practical importance, and it is rarely possible to distinguish more than 10 or 12."
Mercenne (French, 1636) says - "Every string produces 5 or more sounds at the same instant, the strongest of which is called the natural sound of the string, and alone is accustomed to be taken notice of; for the others are so feeble that they are only perceptible to delicate ears . . . not only the octave and fifteenth, but also the twelfth and major seventeenth are always heard; and over and above these I have perceived the twenty-third and ninth partial tones in the dying away of the natural sound."[Scientific Basis and Build of Music, page 59]

Helmholtz falls into a mistake when he says- "The system of scales and modes, and all the network of harmony founded on them, do not seem to rest on any immutable laws of Nature, but are due to the aesthetical principle which is constantly subject to change, according to the progressive development of taste." It is true, indeed, that the ear is the last judge; but the ear is to judge something which it does not create, but simply judges. Nature is the maker of music in its scales and modes. The styles of composition may vary with successive generations, and in the different nations of men; but the scientific basis of music is another thing. It is a thing, belonging to the aesthetic element of our being and our environment; it is under the idea of the beautiful, rather than the idea of the useful or the just; but all these various aspects of our relation to creation have their laws which underlie whatever changes may be fashionable at any period in our practice. If the clang-farbe of a musical tone, that is, its quality or timbre, depends on the number and comparative strength of the partial tones or harmonics of which it is composed, and this is considered to be the great discovery of Helmholtz, it cannot be that the scales and modes are at the caprice of the fickle and varied taste of times and individuals, for these partials are under Nature's mathematical usages, and quite beyond any taste for man's to change. It is these very partials or harmonics brought fully into view as a system, and they lead us back and back till they have brought us to the great all-prevading law of gravitation; it is these very partials, which clothe as an audible halo every musical sound, which constitute the musical system of sounds. [Scientific Basis and Build of Music, page 78]

2 - In the second sphere the tension of strings and other elastic bodies imbues them with forces operating upon the elastic air, producing vibrations quick enough to awaken sounds for the human ear. Here Nature plays on her tuneful harp the same grand fugue; from which everything in music is derived. [Scientific Basis and Build of Music, page 86]

In a musical air or harmony, i.e., when once a key has been instituted in the ear, all the various notes and chords seem animated and imbued with tendency and motion; and the center of attraction and repose is the tonic, i.e., the key-note or key-chord. The moving notes have certain leanings or attractions to other notes. These leanings are from two causes, local proximity and native affinity. The attraction of native affinity arises from the birth and kindred of the notes as seen in the six-octave genesis, and pertains to their harmonic combinations. The attraction of local proximity arises from the way the notes are marshalled compactly in the octave scale which appears at the head of the genesis, and pertains to their melodic succession. In this last scale the proximites are diverse; the 53 commas of the octave being so divided as to give larger and lesser distances between the notes; and of course the attraction of proximity is strongest between the nearest; a note will prefer to move 5 commas rather than 8 or 9 commas to find rest. Thus far PROXIMITY. [Scientific Basis and Build of Music, page 91]


Here on the keyboard we see, nearest to the front, the great 3-times-3 chord of the full genesis of the scale from F1 to F64. When this chord is struck by the notched lath represented in front of the keyboard, the whole harmony of the key is heard at once. Behind this great chord are placed, to the left the subdominant, tonic, and dominant chords of the minor. D F A, A E C, E G B; and to the right the subdominant, tonic, and dominant chords of the major, F A C, C E G, G B D. When the notched lath is shifted from F to D, the minor third below F, and the 3-times-3 minor is struck down in the same way as the major, the whole harmony is heard; and the complete contrast of effect between major and minor harmony can be fully pronounced to the ear by this means. Behind these six diatonic chords, major and minor, on the part of the keyboard nearest to the black keys, are the three chromatic chords in their four-foldness, in both major and minor form. The center one shows the diatonic germ of the chromatic chord, with its supplement of G# on the one hand completing its minor form, and its supplement of A♭ on the other hand completing its major form. A great deal of teaching may be illustrated by this plate.

ERRATUM. - B♭, first chromatic chord, misplaced.
[Scientific Basis and Build of Music, page 104]


There are seven differential and eleven proximate periods all differing in their degrees of complexity according to the individual character of the ratio; and they illustrate to the eye what is the effect in the ear of the same ratios in the rapid region of the elastic vibrations which cause the musical sounds. [Scientific Basis and Build of Music,page 106]

WITH THEIR RATIO NUMBERS.


In the center column are the notes, named; with the lesser and larger steps of their mathematical evolution marked with commas, sharps, and flats; the comma and flat of the descending evolution placed to the left; the comma and sharp of the ascending evolution to the right; and in both cases as they arise. If a note is first altered by a comma, this mark is placed next to the letter; if first altered by a sharp or flat, these marks are placed next the letter. It will be observed that the sharpened note is always higher a little than the note above it when flattened; A# is higher than ♭B; and B is higher than ♭C, etc.; thus it is all through the scales; and probably it is also so with a fine voice guided by a true ear; for the natural tendency of sharpened notes is upward, and that of flattened notes downward; the degree of such difference is so small, however, that there has been difference of opinion as to whether the sharp and have a space between them, or whether they overlap, as we have shown they do. In tempered instruments with fixed keys the small disparity is ignored, and one key serves for both. In the double columns right and left of the notes are their mathematical numbers as they arise in the Genesis of the scales. In the seven columns right of the one number-column, and in the six on the left of the other, are the 12 major and their 12 relative minor scales, so arranged that the mathematical number of their notes is always standing in file with their notes. D in A minor is seen as 53 1/3, while the D of C major is 54; this is the comma of difference in the primitive Genesis, and establishes the sexual distinction of major and minor all through. The fourth of the minor is always a comma lower than the second of the major, though having the same name; this note in the development of the scales by flats drops in the minor a comma below the major, and in the development of the scales by sharps ascends in the major a comma above the minor. In the head of the plate the key-notes of the 12 majors, and under them those of their relative minors, are placed over the respective scales extended below. This plate will afford a good deal of teaching to a careful student; and none will readily fail to see beautiful indications of the deep-seated Duality of Major and Minor. [Scientific Basis and Build of Music, page 109]


When Plate XIII. is divided up the middle of the column, as in Plate XIV., so as that one side may be slipped up a fifth, representing a new key one-fifth higher, its subdominant made to face the old tonic, the two new notes are then pictorially shown, the second being altered one comma and the seventh four commas. The key at this new and higher pitch is by Nature's unfailing care kept precisely in the same form as the first; and wherever the major scale is pitched, higher or lower, the form remains unaltered, all the intervals arranging themselves in the same order. The ear, and the voice obedient to it, carry Nature's measuring-rule in them, and the writing must use such marks as may truly represent this; hence the use of sharps, flats, and naturals; these, however, be it observed, are only marks in the writing; all is natural at any pitch in the scale itself. All this is equally true of the minor mode at various pitches. These two plates are only another and more pictorial way of showing what the stave and the signature are usually made to express. [Scientific Basis and Build of Music, page 114]


Hughes
Major key-notes developing by sevens veering round and advancing and retiring in musical clef
—The use of the two poles F#-G♭ in tones and colours
—Retrace from Chapter V. the tones in musical clef as notes, each note still sounding its tones, leading the ear to its harmony, . . 25 [Harmonies of Tones and Colours, Table of Contents2 - Harmonies]

There is much paradox, and the scheme differs so much from any hitherto published on the subject, that I am aware that, if any link can be found to be wanting in the chain, the defect will immediately be seized upon. I believe, however, that it will be found to admit of clear demonstration. Anyone who has studied the subject knows the difficulties that arise on all sides. In the problem before us, we have to reduce large fields of thought to certain elementary truths. In my endeavour to do this, I have been entirely dependent upon the discovery of the laws of Nature, as my ear is not musical enough to assist me in the matter. "All mysteries are either truths concealing deeper truths, or errors concealing deeper errors," and thus, as the mysteries unfold, truth or error will show itself in a gradually clearer light. The great mystery of music lies in its infinite resources; it teems with subtle elements and strange analogies. A musical note may be compared to a machine: we touch the spring and set the machine in motion, but the complex machinery exists beforehand, quite independent of our will; the motive power is not of our creation, and the laws on which its operation depends are superior to our control. The complex work of harmony is governed by the laws which are originated by the Creator; every note performs what He has willed, and in tracing these laws let us not be indifferent about their Author, but ever bear in mind that the source or fountain of the life and activity of harmonies arises from the Power who created the machine, and who knows how it will act. Let us also remember that we understand this machine but partially, and govern it but imperfectly, as indeed the finite can only, in a small measure, grasp the Infinite; and in any [Harmonies of Tones and Colours, The Method of Development or Creation of Harmonies1, page 15]

study of the natural sciences, as we progress, we find that "hills peep o'er hills, and alps o'er alps arise." As regards keyed instruments, it appears that the effect of those notes which act two parts, such as C# and D♭, is rectified in some way so as to be perfectly attuned to the ideal of harmony within us. Again, the "Amen" sung by the choir in a cathedral may not be in accurate tune, but if nearly the correct intonation is sounded, after traveling along the aisles, the chords always return to the ear in perfect harmony, because the natural laws of music, assisted by the echoing power of the building, have attuned them to the perfect harmonical triad. If the "Amen" be too much out of tune, these laws decline to interfere, and there is no such helpful resonance.* [Harmonies of Tones and Colours, The Method of Development or Creation of Harmonies2, page 16]

I think it will be seen that most of the difficulties in the rules of harmony arise from not taking the key-note, with the six tones which it developes from itself, as guiding the ear, first to the six notes of its harmony, and then to the key-note which becomes the leader of the scale. In the study of the natural gamut, [Harmonies of Tones and Colours, The Method of Development or Creation of Harmonies2, page 16]

See remarks on the wonderful power of the ear in adjusting defects of intonation in Macfarren's Lectures on Harmony, No. II. [Harmonies of Tones and Colours, The Method of Development or Creation of Harmonies2, page 16]

If the laws which I shall endeavour to explain develope the twelve major harmonies, with each note in succession expanding its six tones from within itself; and if each of these is found to be a lower development, which leads the ear to a corresponding higher expansion of the twelve major key-notes, and the six tones of each ascending and descending in an unbroken sequence from any twelve consecutively, the thirteenth being the octave of the first, which commences a higher or a lower series; and if the twelve minor harmonies are also gained by the same laws from their twelve relative key-notes (the thirteenth again being octave): if, again, all other notes are shown to be but higher or lower repetitions of these twenty-four harmonies—may we not consider the problem as in some measure solved? especially as the harmonies proceed in geometric as well as harmonical ratio, and an accurate parallel can be traced between the development of notes and colours, which latter correspond with all the intricacies of harmonic sounds. [Harmonies of Tones and Colours, The Method of Development or Creation of Harmonies3, page 17]

The inequality of the equinoctial points is a well-known fact. It will be seen how apparent this is in the developments of harmonies. From the moment that trinities depart from unity, the balance is unequal, and the repeated endeavours after closer union cause a perpetual restlessness. May not this want of equilibrium be the life or motive power of the entire universe, with its continuous struggle after concord, even to oneness? "Closer and closer union is the soul of perfect harmony." In tracing harmonies of tones and colours, the double tones of keyed instruments will be seen to correspond with the intermediate tints and shades of colours. The twelve notes, scales, and chords in the major and minor series, the meetings by fifths, &c., all agree so exactly in their mode of development, that if a piece of music is written correctly in colours with the intermediate tints and shades, the experienced musician can, as a rule, detect errors more quickly and surely with the eye than the ear, and the correct eye, even of a non-musical person, may detect technical errors. Although the arithmetical relation has been most useful in gaining the laws, it is not here entered upon; but numbers equally meet all the intricacies both of tones and colours. The bass notes have been omitted, in order to simplify the scheme. [Harmonies of Tones and Colours, The Arabian System of Music, page 21]

A key-note developing its harmony may be compared to a seed striking its root downwards, and rising upwards. On striking a note, it sounds from within itself, in a rapid and subdued manner, the six kindred tones necessary to its harmony, and all which do not belong to that individual harmony are kept under; thus all harmonies are in sevens. Each seven forms an ascending and descending series; the ear is aware of the tones, but not of the order in which they rise. [Harmonies of Tones and Colours, Diagram II - The Twelve Keynotes1, page 23]

In the progression of harmonies these are always closely linked into each other. If any key-note is taken as central, its root will be the fifth note of its harmony below, and it becomes in its turn the root of the fifth note above. If we add the silent notes, the root of the central note is the eighth below, and becomes the root of the eighth above. To explain the lower series of the notes sounding the six tones from within themselves, the only plan appeared to be to write the tones as notes in musical clef. By reference to Chapter V., we see that the lowest series still sound their tones, and lead the ear to the higher series of a key-note, and the six notes of its harmony, as they follow each other in trinities. [Harmonies of Tones and Colours, Diagram III - The Major Keynotes Developing by Sevens, page 25a]

THE term "key" will now be employed in the ordinary sense of the musician, as a note which keeps all those other notes under subjection which do not belong to its harmony. A good ear requires that the first note struck should govern and regulate the rest, carrying on the intricacies of the key through the seven octaves ascending and descending. [Harmonies of Tones and Colours, Diagram IV - The Development of the Twelve Major Scales, page 26a]

The twelve key-notes, with the six notes of each as they veer round in trinities, are again written in musical clef, and the scales added. The key-note leads the scale, and, after striking the two next highest notes of the seven of the harmony, goes forward, with its four lowest, an octave higher. The seven of each harmony have been traced as the three lowest, thus meeting the three highest in three pairs, the fourth note being isolated. Notwithstanding the curious reversal of the three and four of the scale, the three lowest pair with the three highest, and the fourth with its octave. The four pairs are written at the end of each line, and it will be seen how exactly they all agree in their mode of development. Keys with sharps and keys with flats are all mingled in twelve successive notes. If we strike the twelve scales ascending as they follow each other, each thirteenth note being octave of the first note of the twelve that have developed, and first of the rising series, the seventh time the scales gradually rise into the higher series of seven octaves beyond the power of the instrument. Descending is ascending reversed. After the seven and octave of a scale have been sounded ascending, the ear seems to lead to the descending; but ten notes of any scale may be struck without the necessity of modulation; at the seventh note we find that the eleventh note in the progression of harmonics rises to meet the seventh. For instance, B, the seventh note in the scale of C, must have F#. This point will be fully entered into when examining the meeting of fifths. To trace the scale of C veering round as an example for all, we may begin with C in Diagram II., and go forward with F, G, A, and B an octave higher. If the twelve scales were traced veering round, they would be found to correspond with the twelve as written in musical clef. [Harmonies of Tones and Colours, Diagram IV - The Development of the Twelve Major Scales, page 26a]

In the retrogression of harmonies, a key-note and its trinities, by sounding the same tones as when ascending, leads the ear to the same notes, and the root of each key-note becomes the fifth lower key-note. F, the root of C, becomes key-note; B♭, the root of F, the next key-note, and so on. [Harmonies of Tones and Colours, Diagram VII - The Modulating Gamut of the Twelve Keys1, page 29]

Below the circular diagram are seen in musical clef the twelve minor key-notes, as gained from the majors. There is only one meeting of the same note in the seven of every major harmony. All the twelve follow the same plan; the lowest note of the seven of C is F, the highest note of the seven is E. The lowest tone sounded by E and the highest tone sounded by F is the same, A—leading the ear from C to its relative minor A. [Harmonies of Tones and Colours, The Minor Harmonies, page 33a]

TO recapitulate from the beginning, observe, firstly, the twelve major key-notes as they have developed from within themselves in succession, six tones in trinities seven times through seven octaves, each thirteenth note being the octave of the first note of the twelve that have developed, and being also the first of the higher series. We may retrace all as still sounding their tones, the key-notes leading the ear to the six notes of each harmony, the keys with sharps and those with flats being mingled. The ascending and descending scales always agree in their harmonies with the key-notes and their trinities. [Harmonies of Tones and Colours, Diagram XV - The Twelve Major and the Twelve Minor Keys, page 42a]

"Thou art Thyself the secret of Thy works;
Thou art the key: Thine image bear they all,
Or more or less. And heaven-born music, as
Thine ordinance in air and ear, and in
The balance of the force elastic, with
The gravitating force that holdeth all,—
Music the statute is, which more than most,
Of all that stands on Nature's statute-book,
Image and superscription—Three in one
In interlacing monogram doth show of Thee!"
[Harmonies of Tones and Colours, Reflections on the Scheme1, page 43]


of action is the great law, and the same force that excites sensation with the auditory nerve lies at the bottom of sensation with organs of vision. When I say my plan, I talk in the old groove, and there are difficulties to be smoothed, but in a way that might be much grumbled over. One very curious thing is plain: your system meets many of the cases on which our present theorists stumble so awfully. I saw this from the first time I had the pleasure of considering it with you, and on this account never relished the idea of giving it up; and the more thought bestowed on it led to its applicability to the more ancient forms of melody—the little tunes of the old world in the East. These are said to be independent of harmony, but your system is perfect harmony. The latest theorists in Paris are all at war with the old theory, and there is now a petition lying before the governing powers of the Paris Academy of Music, praying for a total change in the teaching of harmony in that metropolis; and this memorial has been signed by all the rising celebrities in the musical world there. I really believe the best mode, after all, is the series of six tones—the two trinities; and the law of 'to and fro' is impregnable. That is all right. I should like that term to get into vogue, for it is much more plain and clear than what we call the inverse and reverse, or counterchange." "The grave, or rather extraordinary result of your system is, that so much, very much of it tallies with what may be termed the commonly unknown relatives of the tones. You offer affinities which are termed abstruse, and, although admitted, are accepted without demonstration. Why you should be able to explain the much-quarrelled-over connections is beyond my comprehension, and if I could discover the key, the result would be most important for the well-being of music. With this view your system always interests me. I suspect it lies in that wonderful adaptability of the order of numbers. With the artificial system, music is confined to a few single harmonical tones—none of which can ever be used without alteration—which we gently coax the ear into receiving." "Your system runs up the shortest way, and I find it of advantage in composing." [Harmonies of Tones and Colours, Extracts from Dr. Gauntlett's Letters2, page 49]

See Also


auditory nerve
03 - On the Ear
Hearing
Sense

Created by admin. Last Modification: Tuesday April 6, 2021 04:46:03 MDT by Dale Pond.