Loading...
 

Keynote

noun: The fundamental of a key, can also be lead tone in a chord.
noun: The main tone an object or space resonates with.
noun: The note which, according to the signature, forms the starting point of the scale. The tonic. The 'do'.


Keely
Keely's discoveries embrace the manner of obtaining the keynote, or "chord of mass," of mineral, vegetable and animal substance, therefore the construction of instruments by which this law can be utilized is only a question of full understanding of operation of this law. [Snell Manuscript - The Book, page 3]


The Keynote
"All matter, living and inanimate, has a keynote. Claude Bragdon the architect, who practiced yoga, invited the opera singer Marie Russak to the New York Central Station which he had designed, before it was opened to the public. 'As she stood in the gallery.' says Bragdon, 'she ran up the notes on the diatonic scale in her rich, powerful voice. At the utterance of a certain note the entire room seemed to become a great resonance chamber, reinforcing the tone with a volume of sound so great as to be almost overpowering. The walls, ceiling and the entire building seemed to shout aloud.

'"There!" cried the singer as the sound died away in overtones. "Now your building has found its keynote - it's alive!" [Harvey Day, "The Hidden Power of Vibration"]

Hughes
"Music, pure, natural, and harmonical, in the true and evident sense of the term, is the division of any keynote, or starting-point, into it's integral and ultimate parts, and the descending divisions will always answer to the ascending, having reference to the general whole. The essence and mystery in the development of harmonies consists in the fact that every keynote, or unit, is a nucleus including the past, the present, and the future, having in itself an inherent power, with a tendency to expand and contract. In the natural system, as each series rises, its contents expand and fall back to the original limit from any point ascending or descending; we cannot perceive finality in any ultimate; every tone is related to higher and lower tones; and must be part of an organized whole." - [F. J. Hughes, Harmonies of Tones and Colours - Developed by Evolution, page 16. See Overtone Series, fundamental]

Russell
"The lower diagram, marked C--C, represents their place in the tonal octave of the musical scale. The inert gas is the keynote of the electrical octave just as the note of C in the musical scale is the keynote for that octave. The keynote is omnipresent in all of the elements of matter as well as being omnipresent in the musical scale. By omnipresent we mean that it is in each note as well as its own tone. In music, for example, one is always conscious of

[p. 163]

Electric Current Cycle

Figure 42 - Electric Current Cycle. (scan courtesy of University of Science & Philosophy) (see Atomic Suicide, colorized version) (click to enlarge)

"Fig. 42. Three examples of tonal rhythms of the electric current. Every cycle of an electric current is a complete octave of four pairs and an inert gas keynote. All motion in Nature is tonal and rhythmic. Its rhythms are geometrically and mathematically cube-based.


[p. 164]

the presence of the keynote, no matter which one is being sounded, nor how many of them. In matter the inert gas is not so mind-consciously aware of its omnipresence but the sudden electrocution of any element, by passing a heavy current through it, will release all of the tones except the eternal keynote. By this process the area of gravity, represented by the hole, is gradually compressed out until the hole is closed up by the united pair and the very dense, hot, solid sphere is the product. The life half of the polarized body, which was created by an effort, comes to an end, and the death half, which requires no effort, begins." [Atomic Suicide, page 162-164]

Ramsay
this is the middle of our chord, E, G, B; and remember that this also is G as we found it coming upward, C3 multiplied by 3 being G9. This is another note of the minor, the same in its quantity as that of the major. Now for another chord downward we must divide the root of the one we have found, namely E15, by 3, which will give us A5, the root of a center chord for the minor, and the very key-note of the relative minor to C. And remember that this A5 is just as we found it in coming upward, for F multiplied by 5 gave us A5. Now divide E15 by 5 and we have C3, the middle to our minor chord, A, C, E. Still we must remember that this C3 is just as we found it coming upward, for F multiplied by 3 is C3. Behold how thus far major and minor, though inversely developed, are identically the same in their notes, though not in the order in which they stand in the fifths thus generated. [Scientific Basis and Build of Music, page 32]

This great genetic scale, the all-producer, the all-container, extends over six octaves on each side; for it is not till high in the sixth octave we get B in the major, and it is not till low in the sixth octave that we get F in the minor. It is in the fifth octave, however, that the note which is the distinctive mark of the masculine and feminine modes is generated. D27 in the major, and D26 2/3 in the minor, distinguishes the sex of the modes, and shows which is the head and which the helpmeet in this happy family.2 On the major side F, the root of the subdominant chord, that is the chord which is a fifth below the key-note C, is the root of all. This is the beginning of this creation. If we call the vibration-number of F one, for simplicity's sake, then F1 is multiplied by 3 and by 5, which natural process begets its fifth, C, and its third, A; this is the root, top, and middle of the first chord. From this top, C3, grows the next chord by the same natural process, multiplying by 3 and by 5; thus are produced the fifth and third of the second chord, G and E. From the top of this second chord grows the third and last chord, by the repetition of the same natural process; multiplying G9 by 3 and by 5 we [Scientific Basis and Build of Music, page 66]

third; and in order to do so, A has been mathematically raised a comma, which makes G A B now a 9-8 comma third. E F G, which in the scale of C was a 5-9 comma third, must now take the place of A B C in the scale of C, which was a 9-5 comma third; and in order to do so, F is mathematically raised 4 commas, and must be marked F#; and now the interval is right for the scale of G. E F# G is a 9-5 comma interval. This mathematical process, in the majors, puts every scale in its original form as to vibration-numbers; but since the same letters are kept for the naming of the notes, they must be marked with commas or sharps, as the case may be. In the Sol Fa notation such marks would not be necessary, as Do is always the key-note, Ray always the second, and Te always the seventh. [Scientific Basis and Build of Music, page 83]

In a musical air or harmony, i.e., when once a key has been instituted in the ear, all the various notes and chords seem animated and imbued with tendency and motion; and the center of attraction and repose is the tonic, i.e., the key-note or key-chord. The moving notes have certain leanings or attractions to other notes. These leanings are from two causes, local proximity and native affinity. The attraction of native affinity arises from the birth and kindred of the notes as seen in the six-octave genesis, and pertains to their harmonic combinations. The attraction of local proximity arises from the way the notes are marshalled compactly in the octave scale which appears at the head of the genesis, and pertains to their melodic succession. In this last scale the proximities are diverse; the 53 commas of the octave being so divided as to give larger and lesser distances between the notes; and of course the attraction of proximity is strongest between the nearest; a note will prefer to move 5 commas rather than 8 or 9 commas to find rest. Thus far PROXIMITY. [Scientific Basis and Build of Music, page 91]


This plate is a representation of the area of a scale; the major scale, when viewed with the large hemisphere, lowest; the minor when viewed the reverse way. It is here pictorially shown that major and minor does not mean larger and smaller, for both modes occupy the same area, and have in their structure the same intervals, though standing in a different order. It is this difference in structural arrangement of the intervals which characterizes the one as masculine and the other as feminine, which are much preferable to the major and minor as distinctive names for the two modes. Each scale, in both its modes, has three Fifths - subdominant, tonic, and dominant. The middle fifth is the tonic, and its lowest note the key-note of the scale, or of any composition written in this scale. The 53 commas of the Octave are variously allotted in its seven notes - 3 of them have 9 commas, 2 have 8, and 2 have 5. The area of the scale, however, has much more than the octave; it is two octaves, all save the minor third D-F, and has 93 commas. This is the area alike of masculine and feminine modes. The two modes are here shown as directly related, as we might figuratively say, in their marriage relation. The law of Duality, which always emerges when the two modes are seen in their relationship, is here illustrated, and the dual notes are indicated by oblique lines across the pairs. [Scientific Basis and Build of Music, page 106]

WITH THEIR RATIO NUMBERS.


In the center column are the notes, named; with the lesser and larger steps of their mathematical evolution marked with commas, sharps, and flats; the comma and flat of the descending evolution placed to the left; the comma and sharp of the ascending evolution to the right; and in both cases as they arise. If a note is first altered by a comma, this mark is placed next to the letter; if first altered by a sharp or flat, these marks are placed next the letter. It will be observed that the sharpened note is always higher a little than the note above it when flattened; A# is higher than ♭B; and B is higher than ♭C, etc.; thus it is all through the scales; and probably it is also so with a fine voice guided by a true ear; for the natural tendency of sharpened notes is upward, and that of flattened notes downward; the degree of such difference is so small, however, that there has been difference of opinion as to whether the # and have a space between them, or whether they overlap, as we have shown they do. In tempered instruments with fixed keys the small disparity is ignored, and one key serves for both. In the double columns right and left of the notes are their mathematical numbers as they arise in the Genesis of the scales. In the seven columns right of the one number-column, and in the six on the left of the other, are the 12 major and their 12 relative minor scales, so arranged that the mathematical number of their notes is always standing in file with their notes. D in A minor is seen as 53 1/3, while the D of C major is 54; this is the comma of difference in the primitive Genesis, and establishes the sexual distinction of major and minor all through. The fourth of the minor is always a comma lower than the second of the major, though having the same name; this note in the development of the scales by flats drops in the minor a comma below the major, and in the development of the scales by sharps ascends in the major a comma above the minor. In the head of the plate the key-notes of the 12 majors, and under them those of their relative minors, are placed over the respective scales extended below. This plate will afford a good deal of teaching to a careful student; and none will readily fail to see beautiful indications of the deep-seated Duality of Major and Minor. [Scientific Basis and Build of Music, page 109]


One purpose of this plate is to show that twelve times the interval of a fifth divides the octave into twelve semitones; and each of these twelve notes is the first note of a major and a minor scale. When the same note has two names, the one has sharps and the other has flats. The number of sharps and flats taken together is always twelve. In this plate will also be observed an exhibition of the omnipresence of the chromatic chords among the twice twelve scales. The staff in the center of the plate is also used as to show the whole 24 scales. Going from the major end, the winding line, advancing by fifths, goes through all the twelve keys notes; but in order to keep all within the staff, a double expedient is resorted to. Instead of starting from C0, the line starts from the subdominant F0, that is, one key lower, and then following the line we have C1, G2, etc., B6 proceeds to G♭ instead of F#, but the signature-number continues still to indicate as if the keys went on in sharps up to F12, where the winding line ends. Going from the minor end, the line starts from E0 instead of A0 - that is, it starts from the dominant of A0, or one key in advance. Then following the line we have B1, F#2, etc. When we come to D#5, we proceed to B♭ instead of A#6, but the signature-number continues as if still in sharps up [Scientific Basis and Build of Music, page 114]

In the festoons of ellipses the signatures are given in the usual conventional way, the major F having one flat and minor E having one sharp. The major and minor keys start from these respective points, and each successive semitone is made a new keynote of a major and a minor respectively; and each ellipse in the festoons having the key shown in its two forms; for example, in the major F, one flat, or E#, eleven sharps; in the minor E, one sharp, or F♭, eleven flats. Thus is seen all the various ways that notes may be named. The four minor thirds which divide the octave may be followed from an ellipse by the curved lines on which the ellipses are hung; and these four always constitute a chromatic chord. [Scientific Basis and Build of Music, page 115]


This is an illustration of the chromatic chord resolving by two semitonic progressions and one note in common into four key-notes, which are shown in different positions and inversions; for example F A C F, A C F A, C F A C. Like a universal joint, the chromatic chord turns to each in a suitable form for resolution. [Scientific Basis and Build of Music, page 116]


This plate illustrates how the chromatic chord resolves into four key-notes, in different positions, by one semitonic progression and two notes in common; for example, G B D G, B D G B, D G B D. In a pianissimo and slow passage this resolution has a subtle, soft effect; like a snake in the grass. [Scientific Basis and Build of Music, page 116]


In the three open columns are the three chromatic chords. In the close columns are the same chromatic chords, with the same designations, on the left. The middle row of letters are the chords of the major keys; the letter with the figure being the key note. The right hand row of letters are the chords of the minor keys marked in the same way. The artist will have no difficulty in making use of the other resolutions of this abundant store; but the young student should make similar tables of the other manners of resolution; he will find abundant help for this in other parts of this work. [Scientific Basis and Build of Music, page 119]

See Also


Cause
Differentiation
Fundamental
Idea
inert gas
inert gas keynote
inertial plane
Interval
Key
Music
Neutral Center
Nucleus
Overtone Series
Principles of Acoustics
Rainbow
sound
tone
Zero

Created by Dale Pond. Last Modification: Thursday January 14, 2021 04:57:50 MST by Dale Pond.