Loading...
 

Subdominant

1 - The dominant below; the fourth tone of the Diatonic scale, in the same relation to the keynote from below as the dominant is from above.
2 - The fifth below or the fourth above any keynote.

Ramsay
Subdominant - The fifth below the tonic in a key. [Scientific Basis and Build of Music, page 63]

"The subdominant, or lowest chord in the key - F, A, C, is the natural product of the first combination of the three primary ratios (2, 3, 5). Their second combination develops the tonic or middle chord C, E, G. The third combination develops the dominant or highest chord G, B, D.

keynote or root of F

first combination of the three primary ratios FACSubdominant
second combination of the three primary ratios CEGTonic
third combination of the three primary ratios GBDDominant


from [Scientific Basis and Build of Music, page 17]


"lower effect than the fifth; the seventh, B, has a higher effect than the sixth; but the eighth, C, has a lower effect than the seventh. If the effects of notes or chords depended wholly on the mathematical primes by which they are measured and located, or the ratios inherent in them, then the effects of the tonic, subdominant, and dominant chords would have been alike, for these chords are measured by exactly the same primes, and have exactly the same ratios. It is the position of the tonic chord which gives it its importance and not any special primes by which it is produced, nor any special ratios inherent in it. Notes by the power of 2 have a pure unmixed and invariable character. Notes by the first, second, and third powers of 3 have different degrees of centrifugal force; and the character of the notes produced by the first power of 5 depends on the character of the notes from which they are derived. The final character of notes and chords is determined by the amount of force which they have acquired from the way in which they have been derived, and from their position in the system. And no matter where these notes may be afterwards placed, like chemical elements, they never lose their original forces and tendencies. What Tyndal says of the inorganic chemical elements of the brain is true of the inorganic notes of music, "They are all dead as grains of shot." It is the organic state which gives the notes and chords their gravities and (levity|levities)), and these two tendencies, the one upward and the other downward, constitute the vital principle of music. It is true that the mathematical operation is required to give birth and life to music, and that the mathematical system gives the knowledge of causes down to the law of gravitation, yet the artistic effects are fully realised from the tempered system deriving its organic harmony from this vital principle of music. The centrifugal tendencies of the notes of the subdominant, are too strong to be at all disturbed by the system being tempered. The enormous power of these chords corrects the effect which might otherwise arise from tempering, as the enormous power of the sun corrects the perturbations of the planets." [Scientific Basis and Build of Music, page 29]

But let us proceed with our development, for we need another fifth, a lower one, a subdominant for our minor scale. Well, let us divide A5 by 3 and we have D1 2/3, the root of the lowest fifth; and if we divide A5 by 5 we have for our middle to this fifth F1, and this is F just as we find it at the major start, and identical in quantity in both major and minor. But let us examine the D1 2/3. It is not easy to compare D1 2/3 with D27 of the major; let us bring it up a few octaves by multiplying by 2. This will not alter its quantity, but simply give us the same quantity in a higher octave, in which we may more easily compare it with the major D1 2/3 multiplied by 2 is 3 1/3; multiplied again by 2 is 6 2/3; once more by 2 it is 13 1/3; and once more by 2 it is 26 2/3. Now we can compare it with D27 of the major, and we find this strange fact, that it is a little lower than the major D. The two D's are at the center of the dual system, but the center of the system is neither in the one D nor in the other, but as an invisible point between them, like the center of gravity in a double star; for the minor D is pushed a little below the center, and the major D is pushed a little above the center of the two modes of the system. [Scientific Basis and Build of Music, page 32]

"When the major scale has been generated, with its three chords, the subdominant, tonic, and dominant, by the primary mathematical ratios, it consists of forms and orders which in themselves are adapted to give outgrowth to other forms and orders by the law of duality and other laws. All the elements, orders, combinations, and progressions in music are the products of natural laws. The law of Ratio gives quantities, form, and organic structure. The law of Duality gives symmetry, producing the minor mode in response to the major in all that belongs to it. The laws of Permutations and Combinations give orders and rhythms to the elements. The law of Affinity gives continuity; continuity gives unity; and unity gives the sweetness of harmony. The law of Position gives the notes and chords their specific levities and gravities; and these two tendencies, the one upward and the other downward, constitute the vital principle of music. This is the spiritual constitution of music which the Peter Bell mathematicians have failed to discern:" [Scientific Basis and Build of Music, page 37]

If the effects of notes and chords had depended entirely on their mathematical ratios, then the effect of the subdominant, tonic, and dominant would have been alike; for these three chords have exactly the same ratios. It is the law of position which gives the tonic chord its importance, and not any special ratios embodied in its structure. The ratio of 2 to 1 has a pure, unmixed, invariable character, always realized in the interval of the octave. The notes produced from 1 by the first, second, and third powers of 3 have different degrees of centrifugal force. The character of the notes produced by the first power of 5 depends on the character of the notes from which they are derived, namely, 1, 3, and 9. The final character of the notes and chords derived by the same ratios is determined by the amount of force which they have acquired from the way in which they have been derived, and from their position in the system; and no matter where these notes may afterwards be [Scientific Basis and Build of Music, page 37]

The major scale is composed of three fifths with their middle notes, that is to say, their thirds. And as three such fifths are two octaves, less the small minor third D to F, taking the scale of C for example, so these three fifths are not joined in a circle, but the top of the dominant and the root of the subdominant are standing apart this much, that is, this minor third, D, e, F. Had they been joined, the key would have been a motionless system, with no compound chords, and no opening for modulation into other keys. [Scientific Basis and Build of Music, page 38]

In the same way, but inversely, and still under the Law of Duality, the middle of the subdominant minor is lowered a flat. F#67 1/2 in the key of E minor is F64 in the key of A; B45 in the key of A is B♭42 2/3 in the key of D; E60 in the key of D is E♭56 8/9 in the key of G. This lowering by flats of the subdominant middle in the minors, responsive to the raising by sharps of the dominant middle in the majors, goes on through all the twelve minor keys.1 [Scientific Basis and Build of Music, page 62]

Now we come to a remarkable arrangement of Nature. The minor does not grow in the same way out of this third chord's top. Two features come before us: first the minor chord grows out of the major, but it is taken not from the top but from the middle, from a rib out of his side. B, the middle of the major dominant chord; B, the last-born of the major genesis; B is the point of departure in the outgrowth of the minor mode. The feminine is a lateral growth from the masculine. Another feature: it grows downward, like a drooping ash or willow. Its first generated chord is its dominant, and its last is its subdominant. Its middle chord, like the middle one of the major, is its tonic. Still further, it is generated by division, not multiplication; B45 is divided by 3 and by 5 for the root and middle of this highest chord, E and G. E15 is divided by 3 and 5 for the root and middle of the tonic chord, A and C. A5 is divided by 3 and 5 for the root and middle of the lowest chord, D and F. Thus we have the whole generation of the elements of music, six generations of harmony, like the six days of creation. Up to this point the whole process and aspect is inverse; growing from a middle; growing downward; growing by division;- while the major is growing from the top; growing upward; growing by multiplication. But here the inverse aspect ends. The generating primes of the major are 3 and 5; 3 and 5 are also the generating primes of the minor. In this essential phase of their creation their comparison is direct, not inverse. [Scientific Basis and Build of Music, page 67]

The peculiar effects are exhibited when the chord-scale is next set forth. We have seen that there are six chords evolved in the genesis upward and downward, 3 in the major form and 3 in the minor. In the fifths of the minor the semitone is always in the lower third, occurring between the second and third in the subdominant and tonic, and between the first and second in the dominant chord; whereas in the major it is always in the upper third, between the fourth and fifth in the subdominant, and between the third and fourth in the tonic and dominant chords. While the thirds which the fifths contain are thus so varied, the fifths themselves have always one magnitude, whether major or minor. [Scientific Basis and Build of Music, page 68]

The number of Diatonic Chords. In the major there are three simple chords, two compound chords, and two double compound, seven in all - subdominant, tonic, dominant, subdominant sixth, subdominant fourth, dominant seventh, and dominant ninth. In the minor there are the same number and order, making fourteen. It is not normal to the tonic chord to compound, but it may, in exceptional instances; the major tonic may, in a certain cadence, assume the top of the minor subdominant; and the minor tonic may assume, in a cognate case, the root of the major dominant.1 [Scientific Basis and Build of Music, page 70]

common, to mingle with more chord-society. So those added thirds which constitute compound chords are like accomplishments acquired for this end, and they make such chords exceedingly interesting. The dominant assumes the root of the subdominant, and so becomes the dominant seventh that it may be affiliated with the subdominant chords. Inversely, the subdominant assumes the top of the dominant chord that it may be affiliated with the dominant. The major tonic may exceptionally be compounded with the top of the minor subdominant when it comes between that chord and its own dominant; and the minor tonic may in the same way assume the root of the major dominant when it comes between that chord and its subdominant. The minor subdominant D F A, and the major dominant G B D, are too great strangers to affiliate without some chord to introduce them; they seem to have one note in common, indeed, but we know that even these two D's are a comma apart, although one piano-key plays them both, and the F G and the A B are as foreign to each other as two seconds can be, each pair being 9 commas apart, and G A are 8 commas apart. In this case, as a matter of musical courtesy, the tonic chord comes in between; and when it is the minor subdominant that is to be introduced, the major tonic assumes the top of that chord, and then turns to its own major dominant and suavely gives the two to enter into fellowship; for the tonic received the minor subdominant through its semitonic E F, and carries it to the major dominant through its semitonic B C, along with C in common on the one side and G in common on the other. When it is the major dominant that is to be introduced to the minor subdominant the minor tonic fulfills the function, only the details are all reversed; it assumes the root of dominant, and by this note in common, and its A in common with its own subdominant, along with the semitonic second B C on the one hand and the semitonic E F on the other, all is made smooth and continuous. The whole of this mediatorial intervention on the part of the tonic is under the wondrous law of assimilation, which is the law of laws all through creation; but when the tonic chord has fulfilled this graceful action, it immediately drops the assumed note, and closes the cadence in its own simple form.1 [Scientific Basis and Build of Music, page 71]

How far does this compounding process go? The dominant seventh has the first note of the subdominant; the dominant ninth has the second; if we should add a third note, where are we? G B D F A C; here would be the dominant with the whole of the subdominant welded to it; it would have to be called the dominant eleventh, and it has brought us right through to the root of the tonic C. What would be the use of such a chord? We might, in a similar way, add the dominant to the subdominant till we should be through to the tonic on the other side; it would be G B D F A C, and so we should have reached the top of the tonic G. This process shows us, however, that there is just a certain length that we can go, and there is satisfaction in seeing exhaustively that so it is. When the beautiful becomes the useless, it ceases to be the beautiful. [Scientific Basis and Build of Music, page 72]

The varied effect of position in chords. When a chord stands as C E G C, having its root also at the top, it has its softest, dullest, most united effect; it is undramatic, with little contrast. When it stands as E G C E, having its third at the top and bottom, it has a more ticklish, interesting, far-away effect. In reveries composers often finish thus, as if it had vanished - an unsettled effect. When it stands as G C E G, with its top at top and bottom, it has its most dominant character - loud, swelling. In the position C E G C it stands mixingly with the subdominant C E f G a C, and in this its first position its unseen filling in is chiefly from the region of gravity; hence its soft, grave, dull, heavy effect; and it passes very easily to the subdominant chord. When it stands as G C E G it stands mixingly with the dominant G b C d E G, and has its third position and most brilliant effect and uprising, for its unseen filling in is then chiefly from the region of levity; and it passes easily to the dominant chord. When in its second position, its middle position E G C E, its unseen filling in is mixingly both subdominant and dominant, E f G a b C d E; it has then its most interesting and puzzling effect; on the one hand its softest, dullest, and one-est, on the other hand its most brilliant effect, as if it would at once both sink and soar. [Scientific Basis and Build of Music, page 72]

In compound chords there are no new notes created; they are found by combining the notes of the simple chords. The dominant sevenths, major and minor, are compounded by adding one from the subdominant. [Scientific Basis and Build of Music, page 79]

Seven notes in the Octave are required for the major scale, e.g., the scale of C. All the notes of the relative minor A are the same as those of the scale of C major, with exception of D, its fourth in its Octave scale, and the root of its subdominant in its chord-scale; thus, one note, a comma lower for the D, gives the scale of A minor. [Scientific Basis and Build of Music, page 88]

By affinity the notes group in chords. The tonic is the center chord, the key of the harmony; the dominant is the fifth above it and the subdominant the fifth below it, and these two are balanced on the center chord as the scales on a balance beam. The dominant chord is vigorous and active, tending to soar; the subdominant is solemn, soft, and grave, tending to sink; the tonic is melodious and restful, and in it the harmony finds equilibrium. This far AFFINITY. [Scientific Basis and Build of Music, page 91]

THE OPENING FOR MODULATIONS.

In passing from one key to another in the fellowship of keys in a composition, the new key grows out of the top of the dominant and converts the old dominant into a tonic. The dominant and subdominant being at the opposite extremes of the key, with the tonic between them, are not related by affinity. This want of affinity makes an opening in the system for the new chord to come in by, and it, being related by affinity to the chord of the old dominant, which is now the new Tonic, comes in and establishes itself and the new key for the time. It is this gap between subdominant and dominant, along with the affinity existing between the new key and the old dominant, which makes this musical event to be so gracefully accomplished. This is what is called natural modulation, the passing for a time into another key in the course of a composition; and its abundant and habitual use in music, even in the simplest chorales, shows how natural and acceptable it is. The young student will find illustrations in the second lines of the Psalm tunes - Watchman, Sicily, Tranquility, Eaton, Birmingham, Jackson, Bethel, Bedford, and Sheffield. Take Watchman, for example, and let the young student follow carefully, noting each chord of the little passage, which we shall analyse for his help. It is by such practice that he will become by-and-by familiar with the kinship of keys and the legitimate resources of harmony. [Scientific Basis and Build of Music, page 93]

This tune is in the key of E♭ Major, and the key into which it moves for a passage is the next above it, B♭ Major. The first chord, E♭ G B♭, is the tonic; the second and third are the tonic and dominant; the fourth, C E♭ G, whose full form would be C E♭ G B♭, is the compound subdominant of the new key, which suggests the approaching modulation. The next two chords, in which the measure closes, may either be viewed as the tonic and dominant of the key, or the subdominant and tonic of the new key. The second measure opens with the same chord which closes the first measure, and is best defined as the tonic of the new key; the second chord is clearly the dominant of the new key, and the whole of the second measure is in the new key, and reads, T. D. S. T. compound D. T. Some of these chords might be read as chords of the old key, so near to each other and so kindred are the contiguous keys. All contiguous keys to a certain extent overlap each other, so that some of the chords may be variously read as belonging to the one or to the other. [Scientific Basis and Build of Music, page 94]

"There are three chromatic chords, and each of these three is related to eight particular tonic chords. When one the these chromatic chords goes to any one of its eight tonic chords, three of its notes move in semitonic progression, and the other note moves by the small tone, the ratio of 9:10. There is exception to this rule, whether the key be major or minor. But when the chromatic chord which should resolve to the tonic of C is followed by the subdominant, or the tonic of F (the example in Mr. Green's book), only two of its notes move in semitonic progress. Your friend describes the chord as if it had gone to the tonic of B; and what he said about it, and about D going to C, is what is supposed to be [Scientific Basis and Build of Music, page 94]

"The notes as they naturally arise from unity have different degrees of development, and according to the degree of development of each note is its specific levity or gravity. The three notes which form the subdominant chord have different degrees of gravity; the three which form the dominant chord have different degrees of levity. The remaining note is the center of the tonic chord -

Subdominant - F, A, C E G, B, D - dominant

[Scientific Basis and Build of Music, page 95]

"The three notes of the dominant chord resolve by each note going to the next note upward - G soars to A, B to C, D to E. The three notes of the subdominant resolve by each note going to the next note downward - C sinks to B, A to G, F to E. The two upper notes of the dominant resolve into the tonic chord according to the Laws of Proximity and Specific Levity; and the two lower notes of the subdominant resolve into the tonic chord according to the Laws of Proximity and Specific Gravity. And in this way Nature, in chord-resolution, has two strings to her bow." [Scientific Basis and Build of Music, page 96]


ANOTHER LETTER TO A PUPIL.


The System of Musical Sounds might be sketched as follows : - Three different notes having the simplest relations to each other, when combined, form a chord; and three of these chords, the one built up above the other, form the system.

Three times three are nine; this would give nine notes; but as the top of the first chord serves for the root of the second one, and the top of the second for the root of the third, in this way these three chords of three notes each are formed from seven different notes.

The middle one of these three chords is called the tonic; the chord above is called the dominant; and the chord below is called the subdominant. The order in which these three chords contribute to form the octave scale is as follows : - The first note of the scale is the root, of the tonic; the second is the top of the dominant; the third is the middle of the tonic; the fourth is the root of the subdominant; the fifth is the top of the tonic; the sixth is the middle of the subdominant; the seventh is the middle of the dominant; and the eighth, like the first, is the root of the tonic.

In the first six chords of the scale the tonic is the first of each two. The tonic chord alternating with the other two produces an order of twos, as - tonic dominant, tonic subdominant, tonic subdominant. The first three notes of the octave scale are derived from the root, the top, and the middle of the tonic dominant and tonic; the second three are derived from the root, top, and middle of the subdominant, tonic, and subdominant. The roots, tops, and middles of the chords occurring as they do produce an order of threes, as - root, top, middle; root, top, middle. The first, third, fifth, and eighth of the scale are from the tonic chord; the second and seventh from the dominant; and the fourth and sixth from the subdominant. In the first two chords of the scale the tonic precedes the dominant; in the second two, the subdominant; and in the third two the tonic again precedes the subdominant; and as the top of the subdominant chord is the root of the tonic, and the top of the tonic the root of the dominant, this links these chords together by their roots and tops. The second chord has the top of the first, the third has the root of the second, the fourth has the root of the third, the fifth has the top of the fourth, and the sixth has the root of the fifth; and in this way these successive chords are woven together. The only place of the octave scale where there are two middles of chords beside each other is at the sixth and seventh. The seventh note of the octave scale is the middle of the dominant, and the sixth is the middle of the subdominant. These two chords, though both united to the tonic, which stands between them, are not united to each other by having a note in common, inasmuch as they stand at the extremities of the system; and since they must be enabled to succeed each other in musical progression, Nature has a beautiful way of giving them a note in common by which to do so - adding the root of the subdominant to the top of the dominant, or the top of the dominant to the root of the subdominant, and this gives natural origin to compound chords. The tonic chord, being the center one of the three chords, is connected with the other two, and may follow the dominant and subdominant; and either of these chords may also follow the tonic; but when the dominant follows the subdominant, as they have no note in common, the root of the subdominant is added to the dominant chord, and this forms the dominant seventh; and when the subdominant follows the dominant, the top of the dominant is added to the subdominant, and this forms the subdominant sixth. The sixth and seventh of the octave scale is the only place these two compound chords are positively required; but from their modifying and resolvable character they are very generally used. When the dominant is compounded by having the root of the subdominant, its specific effect is considerably lower; and when the subdominant is compounded by having the top of the dominant, its specific effect is considerably higher. In the octave scale the notes of the subdominant and dominant chords are placed round the notes of the tonic chord in such a way was to give the greatest amount of contrast between their notes and the tonic notes. In the tonic chord the note which has the greatest amount of specific gravity is its root; and in the octave scale it has below it the middle and above it the top of the dominant, the two notes which have the greatest amount of specific levity; and in the octave scale it has above it the middle and below it the root of the subdominant - the two notes which the greatest amount of specific gravity. The third note of the scale, the middle of the tonic chord, is the center of the system, and is the note which has the least tendency either upwards or downwards, and it has above it the root of the subdominant, the note which has the greatest amount of specific gravity, and it has below it the top of the dominant, the note which has the greatest amount of specific levity. Thus the root of the subdominant is placed above, and the top of the dominant below, the center of the system; the specific gravity of the one above and the specific levity of the one below cause them to move in the direction of the center. [Scientific Basis and Build of Music, page 98]

together on radial lines from the center they appear grouped in various chords and combinations, dropping out and coming in in such succession as to constitute what Ramsay, whose genius was given to set this thus before us, calls "Nature's Grand Fugue." Beginning at F in the center at the top, and moving either to the right or to the left, after a run of 7 notes we have 4 consecutive Octaves, and then comes the Minor fifth, A-E, followed by the Major fifth, G-D; and this by another Major fifth, F-C; the combinations keep changing till at the quarter of the circle we come to F, A, C, E, G, a combination of the subdominant and tonic Major; and after another varied series of combinations we have at the half of the circle the elements of 2 minor chords, D, F, A and A, C, E, and one Major chord, C, E, G; at the third quarter we have a repetition of the first quarter group; and the various chords and combinations dropping out and coming in, fugue-like; finally we return to where we began, and end with the three-times-three chord, in which the whole 25 notes are struck together, and make that wondrous and restful close of this strange Fugue. No one can hear the thrice-threefold chord of this close and ever forget it; it is "the lost chord" found; and leads the saintly heart away to the Three in One who is the Lord of Hosts; Maker of Heaven and Earth, and all the host of them. [Scientific Basis and Build of Music, page 103]


Fig. 1 - The pendulums in this illustration are suspended from points determined by the division of the Octave into Commas; the comma-measured chords of the Major key being S, 9, 8, 9, 5; T, 9, 8, 5, 9; D, 8, 9, 5, 9. The pendulums suspended from these points are tuned, as to length, to swing the mathematical ratios of the Diatonic scale. The longest pendulum is F, the chords being properly arranged with the subdominant, tonic, and dominant, the lowest, center, and upper chords respectively. Although in "Nature's Grand Fugue" there are 25 pendulums engaged, as will be seen by reference to it, yet for the area of a single key 13 pendulums, as here set forth, are all that are required. It will not fail to be observed that thus arranged, according to the law of the genesis of the scale, they form a beautiful curve, probably the curve of a falling projectile. It is an exceedingly interesting sight to watch the unfailing coincidences of the pendulums perfectly tuned, when started in pairs such as F4, A5, and C6; or started all together and seen in their manifold manner of working. The eye is then treated to a sight, in this solemn silent harp, of the order in which the vibrations of sounding instruments play their sweet coincidences on the drum of the delighted ear; and these two "art senses," the eye and the ear, keep good company. Fig. 2 is an illustration of the correct definition of a Pendulum Oscillation, as defined in this work. In watching the swinging pendulums, it will be observed that the coincidences [Scientific Basis and Build of Music, page 104]

are always when they have returned to the side from which they were started. The Pendulographer, also, when writing the beautiful pictures which the musical ratios make when a pen is placed under the control of the pendulums, always finds his figure to begin again when the pendulums have finished their period, and have come for a fresh start to the side from which the period began. This confirms our author's definition of an oscillation of a pendulum. Fig. 3 is an illustration of the correct definition of a Musical Vibration, as also given in this work. Although the definition of an oscillation is not identical with that of a vibration, yet on account of their movement in the same ratios the one can be employed in illustration of the other as we have here done. Fig. 4 is a uniform rod suspended from the end as a pendulum; it will oscillate, of course, at a certain speed according to its length. In such a pendulum there are three centers related in an interesting way to the subject of Music in its three chords - subdominant, tonic, and dominant, which roots are F, C, and G. The center of gravity in the middle of the rod at 2, suspended at which the rod has no motion, corresponds to F, the root of the subdominant, in which there is the maximum of musical gravity. The center of oscillation at 3, which is one-third of the length of the rod from the end, is like the root of the tonic whose number is 3 in the genesis of the scale from F1. In this point of suspension the oscillations are the same as when suspended from the end at 1. The point at 9 is at a ninth from the center of oscillation. Our author discovered that, if suspended at this point, the pendulum had its highest rate of speed. Approaching the end, or approaching the center of oscillation from this point, the rate of speed decreases. Exactly at one-ninth from the center of oscillation, or two-ninths from the end, is this center of velocity, as Ramsay designated it; and it corresponds in some sort also to the root of the dominant G, which is 9 in the genesis of the scale from F1; its rate of vibration is nine times that of F1. The dominant chord is the one in which is the maximum of levity and motion in music. [Scientific Basis and Build of Music, page 105]


This plate is a representation of the area of a scale; the major scale, when viewed with the large hemisphere, lowest; the minor when viewed the reverse way. It is here pictorially shown that major and minor does not mean larger and smaller, for both modes occupy the same area, and have in their structure the same intervals, though standing in a different order. It is this difference in structural arrangement of the intervals which characterizes the one as masculine and the other as feminine, which are much preferable to the major and minor as distinctive names for the two modes. Each scale, in both its modes, has three Fifths - subdominant, tonic, and dominant. The middle fifth is the tonic, and its lowest note the key-note of the scale, or of any composition written in this scale. The 53 commas of the Octave are variously allotted in its seven notes - 3 of them have 9 commas, 2 have 8, and 2 have 5. The area of the scale, however, has much more than the octave; it is two octaves, all save the minor third D-F, and has 93 commas. This is the area alike of masculine and feminine modes. The two modes are here shown as directly related, as we might figuratively say, in their marriage relation. The law of Duality, which always emerges when the two modes are seen in their relationship, is here illustrated, and the dual notes are indicated by oblique lines across the pairs. [Scientific Basis and Build of Music, page 106]

The Plate shows the Twelve Major and Minor Scales, with the three chords of their harmony - subdominant, tonic, and dominant; the tonic chord being always the center one. The straight lines of the three squares inside the stave embrace the chords of the major scales, which are read toward the right; e.g., F, C, G - these are the roots of the three chords F A C, C E G, G B D. The tonic chord of the scale of C becomes the subdominant chord of the scale of G, etc., all round. The curved lines of the ellipse embrace the three chords of the successive scales; e.g., D, A, E - these are the roots of the three chords D F A, A C E, E G B. The tonic chord of the scale of A becomes the subdominant of the scale of E, etc., all round. The sixth scale of the Majors may be written B with 5 sharps, and then is followed by F with 6 sharps, and this by C with 7 sharps, and so on all in sharps; and in this case the twelfth key would be E with 11 sharps; but, to simplify the signature, at B we can change the writing into C, this would be followed by G with 6 flats, and then the signature dropping one flat at every new key becomes a simpler expression; and at the twelfth key, instead of E with 11 sharps we have F with only one flat. Similarly, the Minors make a change from sharps to flats; and at the twelfth key, instead of C with 11 sharps we have D with one flat. The young student, for whose help these pictorial illustrations are chiefly prepared, must observe, however, that this is only a matter of musical orthography, and does not practically affect the music itself. When he comes to the study of the mathematical scales, he will be brought in sight of the exact very small difference between this B and C♭, or this F# and G♭; but meanwhile there is no difference for him. [Scientific Basis and Build of Music, page 108]

THE GROWTH-LIKE CONTINUITY OF CHORDS AND KEYS.


Under the symbol of a music plant this plate gives us to realize the growth-like continuity of chords and scales. The roots of the three chords of a key are represented in F, C, and G of the key of C. The plant might be represented as a creeping stem, like the creepers of the strawberry, with its progressive roots struck into the earth; but it is better to show an upward stem with aerial roots, for such are the roots of the musical plant. The main stem of the plant has the three chords, F a C e G b D; that is, F a c, C e g, G b d, the subdominant, tonic, and dominant. The terminal chord, D f# a, is to show that the keys as well as the chords GROW out of each other. Include the side branches which terminate with the octave notes of the chords, read thus - F a c f, G e g e, G b d g, because a chord is felt to be most complete in its unity when thus shut in by the octave note of its root. This is the reason why the great three-times-three chord does not stop at D, the top of the dominant chord, but goes on to the sixth octave of the fundamental root, shutting all in by the great peacemaker, F, in order to preserve the unity of the effect which this chord of chords produces. Before D. C. Ramsay showed that the scale of Harmonics extended to six octaves, it was by teachers of the science of music only extended to four. [Scientific Basis and Build of Music, page 110]

Ramsay

DIATONIC RESOLUTIONS, SIMPLE AND COMPOUND.


In the major system, when the tonic chord follows the subdominant one, there is one semitonic progression to the middle of the tonic, and one note in common with the root, so these two chords are linked together in different ways. When the tonic chord follows the dominant one, there is one semitonic progression to the root of the tonic, and one note in common with its top, so these two chords also are linked together in two different ways. When the tonic chord follows the compound dominant, i.e., the dominant seventh, there are two semitonic progressions, one to the middle and one to the root, and one note in common with its top, so these two are linked together in the same two ways; but the semitonic progression being double gives this resolution great urgency. And now we come to the two chords, the subdominant and dominant, which have no note in common, and must, when they succeed each other, be helped to come together. Nature teaches us how this is to be done by a process of borrowing and lending which will establish between them a similar relationship to that which keeps the continuity of the other chords in succession. We have seen that the top of the subdominant and the root of the tonic are a note in common to these chords, and so the top of the tonic and the root of the dominant also are a note possessed in common by these two chords. In like manner in this disjunct part, when the dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus they come to have a note in common. The top of the [Scientific Basis and Build of Music, page 111]

subdominant also moves by semitonic progression to the middle of the dominant, and so, like the simple chords, they are brought into continuity. When the subdominant follows the dominant, the top of the dominant is lent to the root of the subdominant, and they come to have also a note in common; and the middle of the dominant moves by semitonic progression to the top of the subdominant; and thus resolving continuity is established between them. [Scientific Basis and Build of Music, page 112]

With perfect duality of response does resolution of chords go on in the minors. When the tonic chord follows the subdominant one, they have for their note in common A, i.e., in the key of A; and the middle of the subdominant moves by semitonic progression to the top of the tonic. When the tonic chord follows the dominant one, the top of the tonic and the root of dominant E is a note in common, and the top of the dominant goes by semitonic progression to the middle of the tonic. These simple chords are thus linked together exactly with the same degree of continuity as the simple chords of the major. When the tonic chord follows the compound subdominant, this compound chord, like the compound dominant in the major, has two semitonic progressions - one to the top and one to the middle of the tonic - and they have one note in common. When the compound dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus a note in common is created, and the middle of the subdominant moves by semitonic progression to the root of the dominant. When the compound subdominant follows the dominant, the top is lent to the root of the subdominant, creating a note in common between them, and the root of the dominant goes to the middle of the subdominant in semitonic progression. This is the way of Nature. The unbroken continuity of her ways is perfectly illustrated in the linked sweetness and kinship of chords in a key; or when one key passes by modulation to another key; and that through all the chords and all the keys. We shall see wondrously more of this when we come to the study and contemplation of the Chromatic System of Chords. [Scientific Basis and Build of Music, page 112]


When Plate XIII. is divided up the middle of the column, as in Plate XIV., so as that one side may be slipped up a fifth, representing a new key one-fifth higher, its subdominant made to face the old tonic, the two new notes are then pictorially shown, the second being altered one comma and the seventh four commas. The key at this new and higher pitch is by Nature's unfailing care kept precisely in the same form as the first; and wherever the major scale is pitched, higher or lower, the form remains unaltered, all the intervals arranging themselves in the same order. The ear, and the voice obedient to it, carry Nature's measuring-rule in them, and the writing must use such marks as may truly represent this; hence the use of sharps, flats, and naturals; these, however, be it observed, are only marks in the writing; all is natural at any pitch in the scale itself. All this is equally true of the minor mode at various pitches. These two plates are only another and more pictorial way of showing what the stave and the signature are usually made to express. [Scientific Basis and Build of Music, page 114]


One purpose of this plate is to show that twelve times the interval of a fifth divides the octave into twelve semitones; and each of these twelve notes is the first note of a major and a minor scale. When the same note has two names, the one has sharps and the other has flats. The number of sharps and flats taken together is always twelve. In this plate will also be observed an exhibition of the omnipresence of the chromatic chords among the twice twelve scales. The staff in the center of the plate is also used as to show the whole 24 scales. Going from the major end, the winding line, advancing by fifths, goes through all the twelve keys notes; but in order to keep all within the staff, a double expedient is resorted to. Instead of starting from C0, the line starts from the subdominant F0, that is, one key lower, and then following the line we have C1, G2, etc., B6 proceeds to G♭ instead of F#, but the signature-number continues still to indicate as if the keys went on in sharps up to F12, where the winding line ends. Going from the minor end, the line starts from E0 instead of A0 - that is, it starts from the dominant of A0, or one key in advance. Then following the line we have B1, F#2, etc. When we come to D#5, we proceed to B♭ instead of A#6, but the signature-number continues as if still in sharps up [Scientific Basis and Build of Music, page 114]

distant subdominant, and the root of the separated subdominant is given to the top of the distant dominant. Here also duality holds sway. [Scientific Basis and Build of Music, page 121]

See Also


11.13 - Dominant Conditions are Mated Opposing Pairs as Fifths
14.16 - Dominant
16.25 - Magnetic Attraction caused by Dominant Current of Electrical Stream
combination
Dominant Current
Dominant
Figure 1.3.1 - Subdivisions of Matter and Energy according to Keely
Figure 14.05 - The Dominant is the Light of the Mind of Diety
harmonic combination
LAW of PERMUTATIONS and COMBINATIONS
Law of the Dominant
root of the subdominant
Superdominant
sympathetic mechanical combination
tonic subdominant

Created by Dale Pond. Last Modification: Monday January 11, 2021 05:57:52 MST by Dale Pond.