In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called **angular momentum coupling**. For instance, the orbit and spin of a single particle can interact through spin-orbit interaction, in which case the complete physical picture must include spin-orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle SchrÃ¶dinger equation. In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. **Angular momentum coupling** in atoms is of importance in atomic spectroscopy. **Angular momentum coupling** of electron spins is of importance in quantum chemistry. Also in the nuclear shell model **angular momentum coupling** is ubiquitous.

In astronomy, spin-orbit coupling reflects the general law of conservation of angular momentum, which holds for celestial systems as well. In simple cases, the direction of the angular momentum vector is neglected, and the spin-orbit coupling is the ratio between the frequency with which a planet or other celestial body spins about its own axis to that with which it orbits another body. This is more commonly known as orbital resonance. Often, the underlying physical effects are tidal forces. (wikipedia)

"*Each disc of the polar and depolar groupings in the propeller of the air-ship contains seven pints of hydrogen. In preparing these discs, the hydrogen is submitted to a triple order of vibration. The corpuscular envelopes of the molecules are not enlarged in volume, under their receptive condition, but their velocity of rotation is increased. While under the operation of this transmittive vibration their vortex action is made visible.*" [Newton of the Mind]

See Also

**angular momentum**
**Connecting Link**
**coupling**
**momentum**
**Quantum coupling**
**Quantum Entanglement**
**rotating envelope**
**Rotational-vibrational coupling**
**Rovibrational coupling**
**rovibronic coupling**
**Sympathetic Oscillation**
**Sympathetic Vibration**
**Sympathy**
**Vibronic coupling**