Loading...
 

supersymmetry

In particle physics, supersymmetry (often abbreviated SUSY) is a symmetry that relates elementary particles of one spin to other particles that differ by half a unit of spin and are known as superpartners. In a theory with unbroken supersymmetry, for every type of boson there exists a corresponding type of fermion with the same mass and internal quantum numbers, and vice-versa.

So far, there is no evidence for the existence of supersymmetry. It is motivated by possible solutions to several theoretical problems. Since the superpartners of the Standard Model particles have not been observed, supersymmetry, if it exists, must be a broken symmetry, allowing the superparticles to be heavier than the corresponding Standard Model particles.

If supersymmetry exists close to the TeV energy scale, it allows for a solution of the hierarchy problem of the Standard Model, i.e., the fact that the Higgs boson mass is subject to quantum corrections which — barring extremely fine-tuned cancellations among independent contributions — would make it so large as to undermine the internal consistency of the theory. In supersymmetric theories, on the other hand, the contributions to the quantum corrections coming from Standard Model particles are naturally canceled by the contributions of the corresponding superpartners. Other attractive features of TeV-scale supersymmetry are the fact that it allows for the high-energy unification of the weak interactions, the strong interactions and electromagnetism, and the fact that it provides a candidate for Dark Matter and a natural mechanism for electroweak symmetry breaking.

Another advantage of supersymmetry is that supersymmetric quantum field theory can sometimes be solved. Supersymmetry is also a feature of most versions of string theory, though it can exist in nature even if string theory is incorrect.

The Minimal Supersymmetric Standard Model is one of the best studied candidates for physics beyond the Standard Model. Theories of gravity that are also invariant under supersymmetry are known as supergravity theories. (wikipedia)

See Also

8.26 - Law of Force
Dynaspheric Force
Law of Force
String Theory
Rhythmic Balanced Interchange
Universal Heart Beat
Wave

Page last modified on Monday 30 of May, 2011 04:42:25 MDT

Search For a Wiki Page

Last-Visited Pages